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1. INTRODUCTION

The classical problems

(i) find a real vector ex = (cxl , CX2 , ••• , cxp)T to minimise

where
max I ri I, i= 1,2, ... ,n >p,

r = b - Aex, (1.1)

and A is an n X p matrix (the discrete T-problem) and

(ii) find ex = (CXI, CX2 , ... , cxp)T to minimise

where
max 1r(x, ex)l, a ~ x ~ b,

p

r(x, ex) = f(x) - L CXiC/>;(X),
i~l

(1.2)

withf(x) E C[a, b], c/>;(x) E C[a, b], i = 1, 2, ... ,p (the continuous T-problem)
are now well understood. In particular if the matrix A of equation (1.1) has
rank p, then problem (i) can be solved as a linear programming problem
(see, for example, Stiefel [1], Osborne and Watson [2]).

In this paper, we are concerned with problems (i) and (ii) where the
solution ex satisfies the additional constraints

and
ri > 0,

r(x, ex) > 0,

i = 1,2,... , n

a ~ x ~ b,

(1.3)

(1.4)

respectively. In this case we have the problems of discrete and continuous
one-sided Chebyshev approximation from above. If the inequalities in (1.3)
and (1.4) are reversed, then we have the corresponding problems of one-
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sided Chebyshev approximation from below. We will be concerned in this
paper entirely with approximation from above, although analogous results
hold for approximations from below.

Our aim is to demonstrate the power of linear programming as a tool in
the development of theory and algorithms for one-sided Chebyshev approxi­
mation problems. As is to be expected, this is particularly evident with regard
to the discrete problem and in Section 2, it is shown how results analogous
to those for the discrete T-problem are readily obtained. In Section 3, we
consider the continuous problem and show how linear programming can be
used as the basis for an algorithm which is similar to the first algorithm of
Remes [3] for the continuous T-problem and which converges under a
minimum of restrictions on the problem.

In the interests of clarity, we mention some details concerning the notation

used in connection with partitioned vectors and matrices. For example [:T]
represents the matrix A extended by a row vector xT and [~] represents the

matrixA extended by the rows of the matrix B. Similarly [A x] represents the
matrix A extended by a column vector x and [A B] represents the matrix A

extended by the columns of the matrix B. A vector of the form [~] represents

the column vector b extended by the elements of the column vector c and a
vector of the form [bT cT ] represents the row vector bT extended by the
elements of the row vector CT.

The elements of the matrix denoted by -A are the negatives of those of A,
and -band - bT represent vectors whose elements are the negatives of those
of band bT respectively. Finally, it will be necessary to make use of the null
vector both as a row and column vector. For simplicity, we have just used °
in either case. The appropriate meaning will be clear from the context.

2. LINEAR PROGRAMMING AND THE DISCRETE PROBLEM

In this section, it will be necessary to use standard results from linear
programming theory. These will be quoted without reference but details
may be obtained in, for example, Hadley [4]. It is convenient to state the
problem of linear discrete one-sided Chebyshev approximation from above
as follows.

Let

and define

r = b - Ar%,

P = {r%: 'i ;:;;:: 0, i = 1,2,... , n}.

(2.1)

(2.2)
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Find a E P to minimise

max ri ,

We assume that n > p. Let

h = max r i ,

i = 1,2,... , n.

i = 1,2,... , n. (2.3)

Then this problem can be stated: Minimise h, subject to

o :S;: b - Aa :S;: he, (2.4)

where e is a vector of which each component is 1. This is clearly a linear
programming problem and can be more conventionally formulated as

minimise e~+1 [~]

subject to

(2.5)

where ep +1 is a vector, each component of which is zero except the (p + l)st
which is 1.

This form is still not particularly suitable for the application of standard
techniques because the matrix of contraints is such that 2n slack variables
are required and also because the components of a are not constrained to
be non-negative. As in the corresponding T-problem, both these difficulties
are overcome by going to the dual linear programming problem, which is

maximise

subject to
(2.6)

Remark. Since h is not unconstrained, the last equation of (2.6) does not
automatically hold with equality. However, an argument similar to that given
in the proof of Lemma 4.1 of Osborne and Watson [2] shows that equality
must hold unless an optimum value of z exists at w = O. We exclude this
case from consideration.

LEMMA 1. Necessary and sufficient conditions for a solution by the simplex
method of linear programming to the problem defined by (2.1) and (2.2) are that

(i) the set P is non-null,

(ii) the matrix A has rank p.
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Proof The necessity of (i) is obvious. Suppose, therefore, that A has
rank r < p. Then the rank of the matrix

is less than p + 1 and so no basic feasible solution exists to the linear
programming problem (2.6). This concludes the proof of necessity.

Now suppose that (i) and (ii) are satisfied. Then, by (ii) there exists a
matrix A * formed by p + 1 rows of A such that

')"TA*=O (2.7)

for some nontrivial vector A, unique up to a scalar multiple. Thus there exists
a vector w ;?: 0 such that

where there are at most p + 1 non-zero components of w, equal to values
of I Ai I, i = 1,2,... , p + 1.

Further, we can introduce a scaling factor such that

[eTO]w=l,

and it follows that w is a basic feasible solution to the dual constraints (2.6).
Thus, since the primal problem has a feasible solution, both problems have
optimal solutions and the sufficiency is proved.

LEMMA 2. At a basic feasible solution to the Eqs. (2.6), at least (p + 1)
of the constraints (2.5) will hold with equality.

Proof This follows immediately from the result that if a variable is in
the dual basis, then the corresponding primal constraint must hold with
equality.

LEMMA 3. If a column of [~;] and the corresponding column of [-OAT]

are present together in the dual basis matrix, then the current value of z ~ O.

Proof Suppose that corresponding columns are in fact present in the
dual basis matrix. Then, for some i,

pi(A) a + h = bi ,

-p;(A) a = -bi ,

by Lemma 2, where pi(A) denotes the ith row of A.
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Thus h = 0, and so z :( °by the relationship between the primal and
dual objective functions.

COROLLARY. By our assumption on the optimal value of z, it follows that
at some stage of the calculation, we must have no corresponding columns
together in the dual basis matrix.

We are now able to place the discrete one-sided Chebyshev approximation
problem on a theoretical basis completely analogous to that for the discrete
T-problem. We begin by introducing a number of definitions:

I. Any set of ( p + I) Eqs. of (2.1) is called a reference. We will write
this as

(2.8)

2. If the rank of Aa is p, then there exists a nontrivial vector A, unique
up to a scalar multiple, called the A-vector for the reference, such that

(2.9)

3. The vector lX is called a reference vector if, for all i such that r;aA; =1= 0,
we have

sgn(r;a) ~ sgn(A i ),

or

sgn(r;") = -sgn(Ai ).

4. Let

(2.10)

and define a vector g by

and g; arbitrary in [0, I] if Ai O~ 0.
Then the matrix

[Aa g]

is nonsingular provided that Aa has rank p, so that the vector [~] is uniquely

defined by the set of equations

AalX = ba - hg. (2.11 )

In this case, lX is called the one-sided reference vector and h is called the
reference deviation.
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LEMMA 4. The one-sided reference vector solves the linear discrete one­
sided Chebyshev approximation problem for the given reference.

Proof Consider the solution of the problem (2.8) by linear programming.
Then since at the optimum we require equality in (p + 1) primal equations,

A"a. = b" - hq , (2.12)

where qi = 1 or 0, i = 1,2,... , p + 1. It remains to show that q satisfies the
definition of g given above.

Corresponding to Eq. (2.6), as A" has rankp, we must have

(2.13)

where
W i * = Wi,

Wi* = -Wi,

if qi = 1,

if qi = 0.

Thus, by the uniqueness of the A-vector for the reference, we require

A = f3w*,

where f3 is a scaling factor.
Now the optimal reference deviation is given by

which is greater than zero by assumption. Thus

JL = sgn(ATb") = sgn(f3).

It follows immediately from this result that

(i) if JLAi > 0, then qi = 1,

(ii) if JLAi < 0, then qi = 0,

and this completes the proof.

COROLLARY. The vector w* gives the A-vector for the reference scaled
so that

LEMMA 5. Assume that the linear programmingproblem (2.6) is being solved
by the simplex algorithm, and that a stage has been reached where the current

dual basis matrix does not contain corresponding columns of [~;] and [- t 1.
Let d = min{ri , h - ri}, i = 1, 2,... , n, where h is the current reference
deviation. Then
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(i) d ~ 0, the optimal solution has been obtained,

(ii) if d < °and d = rj for some j, the corresponding column of [ - ~ T]
enters the basis.

(iii) if d < °and d = h - rj for some j, the corresponding column of

[~;] enters the basis.

Proof Let
(2.14)

Let B be the current dual basis matrix and let CB be the vector obtained by
deleting the elements of C corresponding to the nonbasic variables. Further,
define

i = 1,2,... , 2n,

where Ki[M] denotes the ith column of the matrix M.
Now, by Lemma 2,

BT [~] = CB , and so

Zi = «TKi[AT] + h, i = 1,2,... , n,

Zi = -«TKi[AT], i = n + 1,... , 2n.

Thus, using equations (2.1) and (2.14)

i = 1,2,... , n,

i = n + 1,... , 2n.

Now, it is a standard linear programming result that the vector to enter the
basis in a maximization problem (using the simplex algorithm) is given by
that corresponding to j such that

for all i such that Zi - Ci < 0. Further, if Zi - Ci ~ 0, i = 1,2,... , 2n, the
optimum has been reached.

The results (i), (ii) and (iii) follow immediately.

3. LINEAR PROGRAMMING AND THE CONTINUOUS PROBLEM

The problem of linear continuous one-sided Chebyshev approximation
from above can be stated as follows:
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Let
'P

rex, ex) = f(x) - I CXifP;(X),
i~l

wheref(x) E c[a, b], 1Ji(X) E c[a, b], i = 1,2,... , P, and define

p = {ex : rex, ex) ?:: 0, a ~ x ~ b}.

Find ex E P to minimise
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(3.1)

(3.2)

max rex, ex) a ~ x ~ b. (3.3)

The properties of the continuous problem do not admit an analysis through
the theory of linear programming in a manner comparable with that of the
discrete problem. However, the results of Lemma 5 can be used to enable an
algorithm based on linear programming to be developed for the solution of
the continuous problem as posed above. The algorithm, which is similar to
the first algorithm of Remes for the continuous T-problem, involves the
solution of a sequence of discrete problems, and the remainder of this section
is devoted to a description of the algorithm and to a proof of its convergence.
The proof is based on that of Cheney [5] for the convergence of the first
algorithm of Remes, and the notation used is similar.

Let X denote the interval [a, b] and let Xk be a finite discrete subset of X.
Then, provided that Xk contains at least p + I points, we can define a
discrete problem as follows.

Let

and let

'P

rex, ex) = f(x) - I CXi1Ji(X),
i=l

XEXk (3.4)

pk = {ex : rex, ex) ?:: 0, X E Xk}.

Find ex E pk to minimise

(3.5)

max rex, ex), (3.6)

A solution to this problem by linear programming will be obtained provided
that the conditions of Lemma 1 are satisfied. In particular, if the set P defined
by (3.2) is non-null, then the condition (i) will hold for all k, and we can
define

m = inLd(ex),
lIEP

where
L1(ex) = max I rex, ex) I ,

XEX
(3.7)
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and a k E pk to be the vector which minimises

Jk(a) = max I r(x, a)1 .
xeXk

(3.8)

Then the steps of the algorithm are as follows.

(1) Find ak E pk to minimise Jk(a).

(2) Find X 1
k E Xto minimise Jk(ak) - r(x, ak), and X 2

k E Xto minimise
r(x, a k).

(3) Set Xk+l = Xk U X 1
k U xl.

It is an immediate consequence of Lemma 5 that

(3.9)

for all k. Further, the sequence is bounded above by m, and so tends to a
limit. We have

LEMMA 6. Let y be a limit point of the sequence {ak}. Then YEP.

Proof Let

Then, by the algorithm, we must have

r(gi, a k) ;?: 0,

Now, for any a, y and any x E X,

k > i.

1r(x, a) - r(x, y)[ ~ Mia - y I,

where M = maxi max",eX I ep;(x)l, and we define

p

1v 1= L I Vi I,
i~l

for a vector v with p elements.
Thus, in particular

and so if y is a limit point of {ak} and we define

we have

(3.10)

as k ---+ 00.
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Now suppose that
r(xo , y) = ro < 0

for some Xo E X.
Then, for all k sufficiently large, say k > k o , we will have

and consequently

Ok = TJk + r(g\ y)

); TJk

> r(xo , y).
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(3.1l)

This contradicts the definition of Ok' Thus no Xo exists satisfying (3.11)
and the lemma is proved.

LEMMA 7.
LJk(ak) -+ m.

Proof By equation (3.9), Jk(ak) -+ m - E, for some E ); O. It remains to
show that E = O.

Suppose that E > 0 and let y denote a limit point of the sequence {ak}.

Thus, for any °> 0 we may find an index k such that

I y - a k I < 0,

and an index i > k such that

I y - cxi I < o.

Then I a i - ak I :(; 20, and using Lemma 6 and equation (3.10),

m :(; J(y) :(; J(ak) + Mo.
Now

J(ak) = I r(xo\ ak)l,

where xok = X 1
k or xl.

Thus
m :(; I r(xo\ ak)] + Mo

:(; I r(xok
, ai)1 + 3M°

:(; Ji(cxi) + 3Mo

:(; m - E + 3Mo.

If I) < E/3M this is a contradiction, and the result follows.
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It is a sufficient condition for the application of the above algorithm that
the initial discrete set contains (p + 1) points, and that the matrix of the
corresponding discrete problem has rank p. In fact, it is a feature of the
simplex algorithm that successive subsets Xk need only contain (p + 1)
points, as only these points corresponding to basic variables need be
considered.

A sufficient condition for (3.9) to hold with strict inequality is that the
successive linear programming problems have non-degenerate optimal
solutions. In this case, it is necessary for the A-vectors for the optimal
references to contain no zero elements. A sufficient condition for this is that
the functions 1Jix) form a Chebyshev set in [a, b], i.e. no linear combination
vanishes at more than (p - 1) points in [a, b) (see for example [2]).

Note, finally, that since the above algorithm represents an infinite process,
little can be deduced directly about the characteristics of the solution to the
continuous problem. For example, it is incorrect to assume that at least
(p + 1) points of [a, b), r(x, a) must either attain its maximum value or be
zero, for it is possible for points represented in the successive optimal basis
matrices to coalesce, as in the continuous T-problem (see Osborne and
Watson [6]). Clearly there exist characterisation theorems precisely analogous
to those for the continuous T-problem, but these are not available directly
through the medium of linear programming.
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